Hypothyroidism

- Metabolic disorder
- May be familial or sporadic
- May progress as permanent or transient disorder
- Congenital vs. acquired
 - Congenital - may affect fetus in 1st trimester
 - Juvenile - acquired - usually have onset in childhood or adolescence
Hypothyroidism

- Primary vs. secondary
 - Primary- disease or disorder of thyroid gland
 - Secondary- disease or disorder of hypothalamus or pituitary gland compromises thyroid gland function
Hypothyroidism

- **Etiology/ Incidence**
 - **Congenital Hypothyroidism**
 - Absence, underdevelopment or atrophy of thyroid gland most common
 - Inherent dysfunction in transport or assimilation of iodine or in synthesis or metabolism of thyroid hormone
 - Maternal disease adversely affecting fetal thyroid development and function
Hypothyroidism

- Iodine deficiency causing endemic goiter and cretinism
- Hypothalamic or pituitary disorder
- Affects 1 infant in every 4000 live births
- Higher incidence in Hispanic and Native-American infants
- Higher incidence in areas with endemic iodine deficiency
Juvenile-acquired Hypothyroidism
- Chronic lymphocytic thyroiditis
- Late manifestation of congenital absence
- Ablation of thyroid through medical procedure
- Exposure to iodine-containing drugs and agents
- Disease of hypothalamus or pituitary
- Endemic goiter from nutritional iodine deficiency
Signs and symptoms
- Affects multiple systems
- May be family history
- May be associated with other autoimmune disease or syndromes

Neonates/infants
- Infants have no obvious signs during first month
- History of lethargy, poor feeding, elevated bilirubin
- May be post-mature

Older infants, children, adolescents
- History of poor growth
- Developmental delay
Differential diagnosis

- Differentiate primary Hypothyroidism due to intrinsic thyroid gland defects from secondary thyroid deficiency caused by pituitary or hypothalamic disorders
- Congenital thyroxine-binding globulin deficiency
Hypothyroidism

- **Physical Findings**
 - Affects multiple systems
 - Neonates/infants
 - Prolonged jaundice
 - Growth deceleration
 - Hypothermia, skin mottling
 - Large fontanels
 - Normal, slightly enlarged thyroid gland
 - Hoarse cry
 - Axillary, prominent supraclavicular fat pads
 - Respiratory distress in term infant
 - Bradycardia
 - Distended abdomen
 - Lumbar lordosis
Hypothyroidism

- Findings - Infants, children, and adolescents
 - Increased weight for height
 - Linear growth retardation
 - Developmental delay
 - Delayed puberty
 - Skin cool, pale, gray, thickened
 - Hair dry, brittle
 - Possible enlarged thyroid gland
 - Galactorrhea
 - Myopathy
 - Delayed bone age
Diagnostic Tests/Findings

- Newborn screening for congenital Hypothyroidism is routine in all 50 states
 - If abnormal - repeat
 - Evaluated serum TSH and low T4 diagnostic of congenital hypothyroidism. May also test serum thyroxine-binding globulin
 - Positive TSH receptor-blocking antibodies - diagnosis for transient congenital Hypothyroidism
 - May also test - TBG, T3RU
Tests/findings con’t

- Acquired Hypothyroidism secondary to pituitary or hypothalamic disorder
 - Low TSH, low T₄ level, low T₃RU
 - Abnormal pituitary function tests
- Euthyroid sick syndrome secondary to acute or chronic illness-low T₄, normal TBG, low T₃, normal TSH, free T₄ and reverse T₃ normal to high
Hypothyroidism

Tests/findings con’t

- Autoimmune thyroiditis-(Hashimoto’s) with goiter-normal T4 and TSH; elevated serum thyroid peroxidase or thyroglobulin antibody titers
- Repeat thyroid function tests if clinical suspicion of hypothyroidism, history of disease in pregnancy, positive history
- May have abnormal thyroid scan, ultrasound, imaging, or bone age results
Hypothyroidism

Management/Treatment

- Physician consultation or referral to endocrinologist
- Drug of choice daily oral levothyroxine
- Once older children in euthyroid state - monitor their thyroid levels
- Educate parents and child about disease
- Excessive production and secretion of thyroid hormone - TH
Hyperthyroidism

- **Etiology/ Incidence**
 - Caused by excess production of thyroid hormone-TH
 - Autoimmune response- Graves’- most common cause
 - If mother is thyrotoxic prenatally or has history of Graves’, infants may have transient congenital Hyperthyroidism
 - More common in girls than boys
Signs and symptoms

- May have family history
- Neonates/infants
 - Usually have signs shortly after birth
 - Prematurity, low birth weight, poor weight gain, weight loss
 - Fever, flushing
Hyperthyroidism

- Child/Adolescent S/S
 - Weight loss, increased appetite
 - Nervousness, irritability, decreased attention span
 - Sleep restlessness
 - Visual disturbance
 - Palpitations and increased heart rate
 - Trembling
 - Frequent urination and stooling
 - Amenorrhea
Differential Diagnosis

- Neonates
 - systemic illness
- Children and adolescents
 - Nodular thyroid disease
 - Thyroid cancer
 - Euthyroid goiter
 - Chronic disease
 - Thyroiditis
 - Accidental or deliberate excessive thyroid hormone or iodine ingestion
 - Chorea
 - Psychiatric illness
Hyperthyroidism

- Physical Findings
 - Neonates and infants
 - May be small for gestation age
 - Lid retraction
 - Face may be flush
 - Enlarged thyroid
 - Cardiac problems
 - Increased gastrointestinal motility
Hyperthyroidism

- Children and adolescents
 - Warm, moist, smooth skin, diaphoretic skin
 - Eye findings: proptosis, exophthalmos, upper lid lag with downward gaze, lid retraction, stare appearance, periorbital and conjunctival edema
 - Enlarged thyroid, tender or nontender, spongy or firm with palpable border; may have thyroid bruit or thrill
 - Increased pulse rate, systolic hypertension, increased pulse pressure
 - Muscle weakness
 - Diminished motor skills, tremor, short DTR relaxation phase
 - Advanced skeletal maturation radiographically
Hyperthyroidism

Diagnostic Tests/Findings
- If signs or symptoms of thyrotoxicosis or enlarged thyroid, do confirm lab thyroid function tests
- Thyroiditis indicated by elevated T4, free T4, T3 resin uptake and low serum cholesterol
- Circulating thyroid stimulator immunoglobulin and other thyroid antibody tests including thyrotropin receptor antibody titers may be positive
- May have moderate leukopenia, hyperglycemia, and glycosuria
- Graves’ Disease- low TSH, elevated T4, advanced bone age
- Radioactive iodine uptake scan shows increased uptake if excess TH production. If increased released of TH only, will have decreased radioactive iodine uptake
- High T4 not always hyperthyroidism, must also have low TSH, with high T4
Hyperthyroidism

Management/Treatment
- Physical consultation - pediatric endo
- Treatment dictated by identified etiology
- Prompt diagnosis and treatment, especially important in neonates as condition may be life-threatening.
- Treatment goal is prompt return euthyroidism
- Restricted physical activities - with severe disease or in prep for surgery
- Educated parent and child about disease
- Genetic counseling may be indicated
Thyroiditis

- **Etiology/Incidence**
 - Acute suppurative thyroiditis with bacterial etiology e.g. GABHS, pneumococci, S. aureus, and anaerobes; rare
 - Subacute, nonsuppurative caused by viruses e.g. mumps, influenza, echovirus, coxsackie, Epstein-Barr, adenovirus; rare in US
 - Chronic autoimmune lymphocytic - most common cause of goiter and hypothyroidism in childhood
Thyroiditis

- Signs and Symptoms
 - May have recent family history of concurrent upper respiratory illness
 - May have recent family history of autoimmune thyroid disease
 - Onset is acute - rapid
 - Fever, malaise - may be very ill
 - Pain and tenderness of thyroid - may radiate to ear, chest. Severe pain with neck extension; no tenderness with chronic lymphocytic thyroiditis
 - Complaints of unilateral or bilateral swelling of thyroid, complaints of fullness in anterior neck; sensation of tracheal compression
 - May have sore throat, hoarseness, dysphasia
 - May have nervousness, irritability
Thyroiditis

- Differential Diagnosis
 - Distinguish between infectious toxic thyroid thyroiditis and chronic lymphocytic autoimmune thyroiditis
 - Goiters induced by drugs
 - Cancerous or cystic thyroid nodules
Physical Findings

- Findings variable depending on etiology
- May be toxic-appearing if infectious etiology but not necessarily thyrotoxic
- If infectious- thyroid gland unilaterally or bilaterally enlarged, tender, firm
Thyroiditis

- Diagnostic Tests/ Findings
 - Laboratory findings variable depending on etiology
 - In infectious- serum total T₄, free T₄, and T₃RU usually normal or slightly elevated
 - In chronic- elevated TSH and thyroid antibodies, abnormal thyroid scan
 - Surgical or needle biopsy diagnostic
Thyroiditis

Management/Treatment

- Physical consultation
- Specific antibiotic therapy
- Treatment for autoimmune chronic lymphocytic thyroid controversial
- Adolescents need lifelong monitoring
- Genetic counseling may be indicated
Definition

Variation from average pattern of growth height > 2 standard deviations below mean

Etiology/Incidence

Normal growth variations

- Familial or genetic normal variant of average growth pattern
- Constitutional delay of growth
- Puberty

Primary growth abnormalities

- Osteochondrodysplasia
- Chromosome abnormalities
- Intrauterine growth retardation
- Dysmorphic syndromes
Short Stature

- Secondary growth failure
 - Malnutrition
 - Chronic illness
 - Gastrointestinal disease
 - Celiac disease
 - IBD
 - Cystic fibrosis
 - Cardiovascular disease
 - Cyanotic heart disease
 - Congestive heart failure
 - Renal disease
 - Uremia
 - Renal tubular acidosis
 - Hematologic disorders
 - Inborn errors of metabolism
 - Pulmonary disease
 - Chronic infection
 - Anorexia nervosa
Short Stature

- Endocrine disorders
 - Hypothyroidism
 - Cushing syndrome
 - Pseudohypoparathyroidism
 - Rickets
 - IGF-1 deficiency
 - GHD
 - Growth hormone insensitivity
 - Defects in IGF synthesis
Short Stature

- **Signs and Symptoms**
 - **Normal growth variation**
 - Familial short stature - small at birth
 - Constitutional growth delay - usually normal size at birth
 - **Pathologic growth variation**
 - nutritional
 - History of poor nutritional intake
 - malabsorption
 - Endocrine - growth hormone deficiency 1 in 4000
 - Failure to grow, headaches, delayed dental development, developmental delay, dull appearance, polyuria, polydipsia
 - Intrauterine growth retardation and low birth weight
 - Dysmorphism at birth
 - Signs and symptoms of neglect
 - Chronic drug intake
Differential Diagnosis: Distinguish normal variants of familial short stature and constitutional growth delay from pathologic causes

See pathological growth variations
Short Stature

- History
 - Pregnancy, delivery, newborn period
 - Parents’ and siblings’ height, weight and growth pattern
 - When growth started to slow
 - Chronic illness
 - Symptoms of hypothyroidism or other pituitary hormone deficiency
 - Trauma or insult to the CNS
 - Signs of an intracranial lesion
Short Stature- Exam

- Examine for clues to
 - Chronic illness
 - Dysmorphic syndrome
 - Childlike face with large prominent forehead
- Evaluation of the fundi for signs of ICP
- Palpation of the thyroid gland for a goiter
- Evaluation of the stage of puberty
- Measurements of body proportions
 - Arm span compared with height
 - Upper to lower segment ratio
 - Measure from the symphysis pubis to the heel to get the lower segment
 - Tables exist for children of all ages
Physical Findings

- Familial or constitutional - Height, weight, HC growth curve patterns consistent
 - Familial - growth chart showing BW < 3%
 - Constitutional - normal size at birth then declining through 1 to 3 years to <5%

- Pathologic short stature
 - GH deficiency – BW may be normal, length 50% of normal, height and weight deficits; infantile fat distribution; youthful facial features; midface hypoplasia; visual field defects; small hands and feet; newborn may have microphallus (stretched penile length of <2.5cm vs. 4cm-normal); may have CNS findings
Physical findings-pathologic-con’t

- Primordial short stature
 - IUGR-subsequent growth <3rd percentile
 - Primordial dwarfism with premature aging
 - Short stature with and without dysmorphism
- Short stature associated with chromosomal abnormalities-
 Turners, Downs
- Short stature associated with bone or cartilage development
 disorder: skeletal dysplasia, short extremities with normal
 head and trunk, frontal bossing, disproportionate, rickets
Short Stature

- Short stature associated with symptoms of endogenous cortisol excess: moon facies, hirsutism, buffalo hump, striae, hypertension, fatigue, deep voice, obesity, amenorrhea
- Chronic drug intake
- Abnormalities in psychosocial development
Exam Findings

- Abnormalities in previous recordings of height, weight, and HC
- Height may be $< 3^{rd}$ percentile but growth rate normal
- May have abnormal complete and segmental growth measurements and upper to lower body ratio measurements
Lab test to confirm diagnosis

- Abnormal CBC-chronic anemia, infection, leukemia
- Elevated sedimentation rate-vascular disease, cancer, chronic infection
- Abnormal biochemical profiles-adrenal insufficiency, renal disease
- Abnormal stool examination-inflamatory bowel, parasitism
- Abnormal thyroid function studies-hypothyroidism
- Low serum human growth hormone
- Abnormal urinalysis-renal disease
Lab tests to confirm-con’t

- Delayed maturity on radiographic bone age
- Nutritional evaluation may show inadequate calories
- Abnormal home/social evaluation may suggest psychosocial etiology
- Abnormalities on skull-x-ray, CT, MR-inter cranial lesions
- Karyotype analysis in short girls with pubertal delay may indicate Turner syndrome
Short Stature

- Management/Treatment
 - Physician consultation - Endo
 - Boys may need short-term testosterone to initiate sexual development
 - Optimize treatment for other endocrine of systemic or chronic illnesses, adequate calories
 - GH may be indicated for children with know GH deficiency-controversial

 - The FDA has approved a number of indications for GH TX
 - The cost can be as high as $19,000 a year- if not covered by ins
 - Sides effects include
 - Insulin resistance, pseudotumor, edema, growth of nevi, carpal tunnel
Excessive Growth

- Variation from average pattern of growth in linear height with height >2 SD above the mean

Etiology/Incidence

- Normal variation in growth - tall structure
- Pathologic variation in growth
 - Endocrine disorder
 - IDM or GH excess or precocious puberty
 - Genetic causes
 - Marfan syndrome-connective tissue disorder
 - Chromosomal abnormalities- Klinefelter syndrome, XYY, XXYY
Excessive Growth

- **Other Etiology**
 - Idiopathic or exogenous obesity - early puberty with accelerated growth - not beyond genetic potential
 - Homocystinuria - inherited inborn metabolism error
 - Cerebral gigantism - possible hypothalamic dysfunction, adult stature normal to excessive
Excessive Growth

- Signs and Symptoms
 - Concerns primarily with girls/parents
 - Symptoms variable depending on underlying etiology
 - Familial or constitutional tall stature-Length normal at birth, tall stature evident at 3 to 4 years-growth rate slows after 4-5 years with normal curve
 - IDM-Hx maternal diabetes, LGA
 - Beckwith-Wiedemann-LGA, rapid growth in childhood; concern about height; symptoms of hypoglycemia
Excessive Growth

- Signs and symptoms con’t
 - GH excess - headache, visual impairment, coarsening of facial features, enlargement of nose and jaw, increases in hands and feet, polyuria, polydipsia, irregular menses, joint pain
 - Precocious puberty - concern about height, early development
Excessive Growth

- Signs and Symptoms con’t
 - Klinefelter’s syndrome
 - Marfan’s-height, vision, cardiac problems
 - Obesity-normal height and weight at birth
 - Homocystinuria-concern about height, MR, vision, CNS sx, back pain
 - Cerebral gigantism-rapid growth, feeding problems and developmental delay
Excessive Growth

- Differential Diagnosis: normal variants need to be distinguished from pathologic causes.
- Physical Findings
 - Constitutional tall stature: 2 to 4 SD above average height for age.
Physical findings con’t

- Endocrine disorder
 - IDM- LGA at birth
 - GH excess- tall
 - Precocious puberty- tall

- Genetic disorders
 - Marfan’s- tall stature, dolichocephaly, abnormal proportions, scoliosis, myopia, heart murmur, hypotonicity, pectus excavatum, joint issues
 - Klinefelter syndrome- tall stature, underweight, MR, long legs, abnormal proportions, normal penis with small testes with decreased sensitivity to pressure, cryptorchidism, hypospadias
Excessive Growth

- Physical findings con’t
 - Other causes of tall stature
 - Obesity - normal exam
 - Homocystinuria - tall, myopia, CNS sx, convulsion, MR, osteoporosis, vertebral collapse
 - Cerebral gigantism - dysmorphic, abnormal proportions, MR, macrocephaly, dolichocephaly, prominent forehead, hypertelorism with other ocular issues, high palate, pointed chin, CNS sx, poor motor coordination
 - Beckwith-Wiedemann Syndrome - omphalocele, umbilical hernia, accelerated growth in childhood, macroglossia, high palate, midface hypoplasia, hemihypertrophy
 - Diagnostic Tests/Findings
 - Recordings of height/weight and OFC on growth chart show height > 2 SD above mean for age
Excessive Growth

- History/Diagnostic Tests/Findings
 - Recordings of height/weight and OFC on growth chart show height >2 SD above mean for age
 - Careful family history of tall growth patterns may elucidate familial etiology of tall stature
 - Lab tests to confirm diagnosis bases on clinical findings and rule out endocrine disease
 - Radiographic bone age not advance in constitutional tall stature
Excessive Growth

- Diagnostic tests/findings con’t
 - Abnormal echocardiogram with Marfan’s
 - Abnormalities on skull radiograph, CT, or MRI of cranium
 - Karyotype analysis may indicate chromosomal abnormalities
Excessive Growth

Management/Treatment
- Physical consultation
- Pharmacological management controversial
- Homocystinuria - restrict dietary methionine
- GH excess from CNS tumor or adrenal or gonadal tumor
- Management of endocrine disease associated with tall stature
- Beckwith-Wiedemann - treat excess insulin production
Symptoms provoked by abnormally low blood glucose levels occurring when child with diabetes receives excessive insulin, fails to eat, or exercises too strenuously; in child without diabetes, blood glucose lever must be $< 40 \text{ mg/dL}$ and $< 30 \text{ mg/dL}$ in newborns.
Etiology/Incidence

- Transient neonatal Hypoglycemia
 - SGA infants with decreased production of blood sugar
 - LGA IDM-exposure to maternal blood sugar
 - Increased glucose use-physiologic stressors secondary to asphyxia, respiratory illness, heart disease, cold injury, starvation

- Hypoglycemia of childhood
 - Hyperinsulinism
 - Functional fasting Hypoglycemia
 - Associated with CNS disorders
 - Metabolic disorders and endocrine insufficiency
 - Severe malnutrition states
 - Other-drug ingestion, drug toxicity(alcohol, aspirin, oral hypoglycemic agents)
Hypoglycemia

- Signs and Symptoms
 - Neonatal - findings variable -
 - Irritable
 - Jittery
 - Refusal to feed
 - Tend to be small for age
 - Childhood
 - Mood changes, nervousness, weakness, hunger, vomiting
 - History - family; may have symptoms of metabolic or hormonal disorders
 - Functional fasting - ketotic hypoglycemia - vomiting, anorexia, URI, may have early morning seizures
Hypoglycemia

- **Differential Diagnosis**
 - Distinguish among various possible etiologies of Hypoglycemia
 - Functional (fasting)
 - Ketotic
 - Inherited disease
Hypoglycemia

- Physical findings
 - Neonatal
 - Cachexia or macrosomic infant
 - Irritability, lethargy, weak cry
 - Hypothermia, cyanosis, diaphoresis, pallor
 - Uncoordinated eye movement, eye-rolling
 - Apnea, irregular breathing, tachycardia
 - Twitching, jitteriness, convulsions, semi consciousness, coma
Hypoglycemia

Physical findings con’t
- Childhood
 - Signs same as neonate
 - Diminished growth
 - Difficulty talking
 - Signs of other systemic illness
 - Abdominal or pelvic masses
 - Unsteady gait
 - Concurrent illness
Hypoglycemia

- **Diagnostic tests/finding**
 - Transient neonatal hypoglycemia - routine Dextrostix; if
 - Whole blood glucose level <35 in first 24 hours or <40 thereafter or...
 - Plasma glucose level <40 in first 23 hours or <45 thereafter
 - Low blood glucose during episode; consistent and repeated levels below 40 with associated signs - need further workup
 - In hyperinsulinemia, serum insulin levels may be inappropriately elevated when compared with glucose level obtained at same time
Hypoglycemia

Management/treatment

- Consultation with endo
- Treat hypoglycemic episodes promptly and adequately
- Hypoglycemic reactions in children with diabetes-
 - Surgery for pancreatic adenoma, partial pancreatectomy if insulin secretion suppression unsuccessful
 - Children with function (fasting) hypoglycemia-treat with liberal carbohydrate diet with bedtime snacks, moderate restriction on ketogenic foods; avoid prolonged fasting; parents may need to check urinary ketones
Hyperglycemia-FYI

- Common hereditary metabolic and endocrine disorder characterized by insulin deficiency resulting in abnormal metabolism of carbs, protein, and fat

- Always admitted to pediatric hospital with onset- to endo services- never treated in primary care!!
Normal Puberty

- Physical changes occur in response to production of sex steroids by the ovaries or testes.
- Hypothalamic gonadotropin-releasing hormone regulates the release of luteinizing hormone and follicle stimulating hormone from the pituitary gland which in turn stimulate gonadal hormone secretion.
- Normal age range for entering puberty in girls is now earlier:
 - Signs may be noted as early as 6 years old in African American girls and 7 years old in Caucasian girls.
- The timing of menarche and reaching tanner stage 5 has not changed dramatically:
 - Menarche happens with 3 years of start of breast development.
 - 95% of girls will have started puberty by 13 years old.
- Boys may begin puberty as young as 9 years and the upper range is age 14 years:
 - The first sign of puberty is increased testicular volume in 85% of boys.
Early Puberty

Four categories

- **Premature thelarche**
 - Occurs in infant and toddler girls—is isolated breast development
 - Rarely progresses to true precocious puberty

- **Premature adrenarche**
 - Early onset of pubic hair in boys or girls, not associated with other features of true puberty, is most often idiopathic
 - These children are at increased risk for PCOS and metabolic syndrome

- **Isolated menarche**
 - Is uncommon, is one to a few episodes of vaginal bleeding without breast development
 - Rule out sexual abuse, vaginal tumor, functional ovarian cyst that produces estrogen and primary hypothyroidism

- **True precocious puberty**
Precocious puberty
- The onset of multiple features of puberty earlier than normal range
 - May include
 - Accelerated linear growth
 - Breast development or penis enlargement
 - Pubic hair development
 - Bone age may be advanced

Divided into two broad categories
- Central, gonadotropin dependent
 - Idiopathic
 - CNS disorder
- Peripheral, gonadotropin independent
 - Girls - McCune Albright syndrome, ovarian cyst, estrogen secreting ovarian or adrenal tumor
 - Boys - severe, non-salt wasting, congenital adrenal hyperplasia
 - Testotoxicosis, testicular tumor
- FYI - prolonged exposure to exogenous sex hormones can also cause precocious puberty
 - Mothers birth control pills or fathers topical testosterone
Disorders of Pubertal Development

- History
 - Symptoms; such as
 - Breast development, pubic hair, phallic enlargement, acne, body odor, oily scalp
 - Age of onset
 - Progression
 - Duration
 - Pattern of growth
 - Any symptoms of CNS lesion
 - Pattern of family puberty
 - Exposure to topical estrogens or testosterone or oral estrogens
Disorders of Pubertal Development

- Physical Exam
 - Assessment of stature and growth velocity
 - Description of the tanner stage

- Diagnostic tests
 - Premature thelarche
 - No tests
 - Premature adrenarche
 - Serum 17 hydroxpyrogestrone
 - To exclude congenital adrenal hyperplasia
 - 24 hour urine for 17-ketosteroids or Imaging of the adrenal glands
 - To exclude an adrenal tumor
 - Isolated menarche
 - Thyroid function
 - To exclude primary hypothyroidism
 - Pelvic ultra sound
 - To look for ovarian cyst or pelvic tumor
Disorders of Pubertal Development

- Precocious puberty
 - Bone age
 - LH, FSH, estradiol or testosterone
 - If the LH and FSH are high do an MRI to exclude CNS tumor
 - If LH and FSH are low do a GnRH stimulation test to distinguish central from peripheral puberty
 - For peripheral
 - Pelvic or testicular ultrasonography
 - Serum 17-OHP to rule out severe CAH
Management of precocious puberty done with the guidance of Endo

- Treatments depend on;
 - the underlying disorder
 - Age of the child
 - Advancement of the bone age
 - Child's and family's emotional response to the condition

- Treatments include
 - radiation, surgery, or chemotherapy for CNS tumor
 - Long acting GnRH agonist to bring serum sex steroids to prepubertal levels

- Treatment goal is to increase final adult height
Delayed Puberty

Puberty is considered delayed when a boy 14 years or older or a girl 13 years or older has no clinical features of puberty.

Epidemiology

- Any chronic condition that delays the bone age may cause delayed puberty (since the bone age correlates with puberty better than the chronologic age).
- Also failure of any part of the hypothalamic-pituitary–gonadal axis may also delay puberty.
- The most common cause of delayed puberty is Constitutional Growth Delay.
 - Which is covered in the failure to thrive lecture.
- Other causes include:
 - Chronic illness
 - Growth hormone deficiency
Clinical findings in delayed puberty

- History and physical should focus on:
 - Clinical clues indicating a chronic illness
 - Signs and symptoms of hypothyroidism
 - History of CNS insult
 - New CNS symptoms suggesting hypopituitarism
 - ROS
 - Pattern of growth
 - Sense of smell
 - Galactorrhea
Disorders of Pubertal Development

- **Diagnostic tests**
 - Screen for acute and chronic illness
 - CBC
 - Sed Rate (ESR)
 - UA
 - Liver enzymes
 - Electrolytes (renal function)
 - Bone age
 - Thyroid screening
 - IGF-1 and IGFBP-3 if growth hormone deficiency suspected
 - Serum prolactin
 - LH and FSH
 - When gonadal failure is present, LH and FSH are abnormally elevated if the bone age is older than 11 years in a girl and 12 years in a boy
Management of delayed puberty

- Refer to Endo
 - hormone replacement is the treatment of choice for hypogonadism
Gynecomastia

- **Definition**
 - Visible glandular enlargement of the male breast

- **Etiology/Incidence**
 - Neonatal - due to cross-placental transfer of maternal hormones; usually resolves by 2 to 3 weeks
 - Pubertal - too little androgen and/or too much estrogen on mammary tissue, may occur in up to 75% of normal boys
 - Pathologic - secondary to drug side effects, underlying disease
Gynecomastia

- Signs and Symptoms
 - Breast development in other than pubertal females
- Differential diagnosis
 - Obesity
 - Breast infection
 - Fat necrosis due to injury
 - Drugs
 - Klinefelter’s
Gynecomastia

Physical Findings

- Neonatal—usually bilateral, tissue enlargement
- Pubertal—breast tissue enlargement, movable, disk-shaped
- Pathologic—malnourishment, lymphadenopathy, delayed sexual maturity
Gynecomastia

- Diagnostic Tests
 - Endocrinology studies as indicated
 - Imaging techniques as appropriate
 - Karyotyping if Klinefelter’s suspected
Gynecomastia

- Management
 - Neonatal- Parent education
 - Pubertal- explanation, reassurance and observation
 - Physiologic- medical or surgical treatment is usually required
Definition-

- Primary amenorrhea - failure of onset of menarche in females who are 16 years and have normal pubertal growth and development; 14 years with absence of normal growth and development; or in girls who not begun menstruation 2 years after completed sexual maturation.

- Secondary amenorrhea - absence of menstruation for > 3 cycles at least 6 months after menstruation established.
Amenorrhea

- Etiology/Incidence
 - Primary
 - Constitutional/familial – common
 - Obstruction of flow e.g. fusion or stenosis, imperforate hymen
 - Estrogen deficiency
 - Primary ovarian insufficiency-organic or functional ovarian failure e.g. anatomic anomalies, pelvic irradiation, enzyme defects, autoimmune disease, infection
 - Secondary-hypothalamic/pituitary disorders e.g.-DM, CF, anorexia, excessive exercise, endocrine disease
 - Androgen excess e.g.-polycystic ovaries, adrenal androgen excess (Cushing's)
 - Ovarian tumors
Amenorrhea

- Etiology - Secondary amenorrhea; many causes same as primary
 - Pregnancy - most common
 - Hypothalamic, pituitary and adrenal disorders
 - Tumors
 - Chromosomal abnormalities (Turners);
 - Endocrinopathies
 - Chronic illness - esp... with weight loss
 - Conditions affecting gonadal function
 - Pharmacological agents (discontinuance of birth control pills, use of tranquilizers)
 - Significant emotional stress or strenuous exercise programs - especially with runners, ballet dancers, and gymnasts, major weight loss
 - Uterine dysfunction after abortion, infection or C-Section
 - Hysterectomy
Amenorrhea

- **Signs and Symptoms**
 - Primary - no history of menses in adolescence; may have symptoms of stress, adrenal dysfunction or gonadal disease, pituitary or hypothalamic disease, chronic illness including eating disorders, chromosomal abnormalities, pregnancy, cyclic abdominal pain without menstruation in pseudoamenorrhea.
 - Secondary - sudden or gradual cessation of menses; symptoms vary depending on etiology; may exercise excessively.
Differentials-

- Determine if underlying etiology due to chronic illness, CNS disease, endocrinopathy
- Distinguish primary amenorrhea due to constitutional or familial etiology, from pregnancy
- Distinguish secondary amenorrhea due to pregnancy, underlying disease or disorder
- Determine amenorrhea vs. pseudoamenorrhea (menstruation occurs but obstruction prevents release of menstrual blood)
Physical Findings

- May have normal exam, or signs of chronic disease, syndromes, may show signs of pregnancy
- May lack development of secondary characteristics or normal sexual development
- Pelvic exam may show pregnancy, reproductive system abnormalities e.g. cervical atresia, imperforate hymen
Amenorrhea

- Diagnostic Tests/Findings
 - Pregnancy test
 - Careful family history to rule out constitutional/family delay,
 - Consultation with physician and/or referral to specialists as needed.
Amenorrhea

Management and Treatment

- Constitutional/family primary amenorrhea – educate, reassurance, monitoring
- Amenorrhea associated with other etiologies requires further evaluation, physician consultation or referral to specialist
- Treatment directed at management or correction of underlying cause of abnormal menstrual process
- Sensitivity to significant concern of delayed development by child and family—very important
- Parent and child education to cause and treatment
- Genetic counseling-PRN